
December 1997 The Delphi Magazine 43

Beating the System:
Using OpenGL In Delphi Apps
Hasta La Vista, Baby!
by Dave Jewell

Anyone who has watched
movies such as Arnold

Schwarzenegger’s Terminator II:
Judgement Day, or the somewhat
more innocuous Toy Story, will
have been impressed with the
capabilities of modern day com-
puter graphics technology, which
can often produce photo-realistic
rendering effects given time, suffi-
ciently powerful hardware and the
right software. OpenGL is an exam-
ple of a high quality graphics
library which is routinely used for
this type of work. It provided the
liquid-metal terminator in Termina-
tor II and many of the monsters in
Jurassic Park. It was originally
developed by Silicon Graphics for
use on their high-end workstations
but, because it was written in
portable C, has become something
of an industry standard with

implementations on many differ-
ent types of hardware. Nowadays,
the development of OpenGL is
managed by the OpenGL Architec-
ture Review Board, a consortium of
companies which includes Silicon
Graphics, Microsoft, IBM, Intel and
DEC.

Microsoft originally imple-
mented OpenGL under Windows
NT only, reasoning that a relatively
low-end machine running Win-
dows 95 (or Windows 3.1!) would
not be equal to the task of support-
ing a professional 3D rendering
library. This probably made sense
two or three years ago, but with
today’s more powerful and rela-
tively cheap hardware, most
Windows 95 machines are quite
capable of supporting simple
OpenGL programs. So, Microsoft
quietly slipped a Windows 95

implementation of the OpenGL
libraries into the latest release of
Windows 95 (OSR2).

An Introduction To OpenGL
The OpenGL libraries comprise
two DLLs: OPENGL32.DLL and
GLU32.DLL, both of which should
be resident in your Windows\
System directory. If you’re not sure
whether or not you’re set up for
OpenGL, just look for the OpenGL
screen savers in the Control Pan-
el’s Display Screen-Saver dialog.
My favourite is the 3D Pipes demo
(see Figure 1) which bears more
than a superficial resemblance to
the pipe work in our airing
cupboard!

The lowest level DLL,
OPENGL32.DLL, provides the core
functionality of OpenGL itself,
while the GLU32.DLL library con-
tains the so-called ‘utility’ routines
which provide a somewhat higher
level of functionality. Tradition-
ally, OpenGL ships with a third
library, the GLAUX or auxiliary
library, which is intended to help
those who are new to OpenGL. The
GLAUX library provides the high-
est level of functionality and it
takes care of issues such as
window creation and management,
keyboard and event handling.
Because of this, parts of the GLAUX
library need to be specially written
for each target platform. In the
case of Delphi programmers,
Borland provide the OPENGL.PAS
file which contains all the declara-
tions for the core and utility librar-
ies. However, neither Microsoft
nor Borland provide declarations
or libraries for GLAUX.

In actual fact, Microsoft provide
source code for the GLAUX library
as part of the Win32 SDK, but, natu-
rally, this source is in C. It would
certainly be possible to convert

➤ Figure 1: Journalists often get paid by the word. Now imagine
a world where plumbers get paid according to the amount of
pipe-work they install! This is the OpenGL Pipes screen saver
which comes with Windows NT and Windows 95 OSR2.



44 The Delphi Magazine Issue 28

this code into Pascal but might be
quite a time consuming exercise
(any volunteers?!).

This is a real shame because the
GLAUX library is such a valuable
starting-out point for OpenGL nov-
ices. But never fear, all is not lost. I
recently came across what I
believe is a public-domain imple-
mentation of GLAUX, packaged as a
DLL. Because this DLL was
designed to work with Borland C
compilers, it will also work very
nicely with 32-bit Delphi. This
month’s disk includes a copy of the
DLL, which is named, logically
enough, GLAUX.DLL. I’ve also pro-
vided a file called GLAUX.PAS
which is my translation of the vari-
ous GLAUX routines into Delphi
Pascal. Bear in mind that the trans-
lation isn’t quite complete: the
stuff that follows the final end. will
be ignored by the compiler and
represents the translation work
that’s still outstanding.

In the October issue, Andrew
Kern and Noel Rice discussed a
minimum size DirectX 3D program.
I’ve tried to do the same with an

OpenGL animation. Listing 1 shows
a fairly minimalist Delphi program
which makes use of the GLAUX
library to do its stuff. You can see it
running in Figure 2.

In order to run this program,
you’ll need to have GLAUX present
on the path, and you’ll obviously
also need to have OpenGL itself
installed.

Did I say Delphi program? Well...
not exactly. For the purposes of
simplicity, GLAUX applications are
normally written as console appli-
cations which collect parameters
and display debug information in
the console window while display-
ing any graphics in a separate
window. Not wishing to break with
tradition, I’ve written this program

➤ Figure 2:
The ubiquitous
teapot demo,
courtesy of
the GLAUX
program
(Listing 1).
The teapot
is spinning
in three
dimensions,
but we can't
demonstrate
this on the
printed page…

➤ Listing 1

program AuxTest;
uses
Windows, OpenGL, GLAux;

{$R *.RES}
var
cSelection: Char;

{ Callback routine: called when window changes size }
procedure ChangeSize (w, h: GLsizei); stdcall;
begin
// Prevent a divide by zero
if h = 0 then h := 1;
// Set viewport and clipping volume
glViewport (0, 0, w, h);
glLoadIdentity;
if w <= h then
glOrtho(-100.0, 100.0, -100.0, 100.0 * h / w, -100.0,
100.0)

else
glOrtho (-100.0, 100 * w / h, -100.0, 100.0, -100.0,
100.00);

end;
{ Callback routine: called by AUX library to render scene }
procedure RenderScene; stdcall;
begin
// Clear the screen
glClear (GL_Color_Buffer_Bit);
// Rotate one degree around each axis
// (Note we don't call LoadIdentity() so
// this rotation is cumulative
glRotatef (1.0,1.0,0.0,0.0);
glRotatef (1.0,0.0,1.0,0.0);
glRotatef (1.0,0.0,0.0,1.0);
// Draw the selected object
case cSelection of
'a':    auxWireCone (30.0, 75.0);
'b':    auxWireCylinder (30.0, 75.0);
'c':    auxWireDodecahedron (75.0);
'd':    auxWireIcosahedron (75.0);
'e':    auxWireOctahedron (75.0);
'f':    auxWireSphere (75.0);
'g':    auxWireTeapot (50.0);
'h':    auxWireTetrahedron (75.0);
'i':    auxWireTorus (20.0, 50.0);
'j':    auxWireCube (75.0);
'k':    auxWireBox (75.0,75.0,75.0);

end;
glFlush;
// Swap drawing to screen
auxSwapBuffers;

end;
procedure Main;
begin
// Display a menu of objects to draw
Writeln ('Select Wire object to draw:');
Writeln;
Writeln ('a - Cone');
Writeln ('b - Cylinder');
Writeln ('c - Dodecahedron');
Writeln ('d - Icosahedron');
Writeln ('e - Octahedron');
Writeln ('f - Sphere');
Writeln ('g - Teapot');
Writeln ('h - Tetrahedron');
Writeln ('i - Torus');
Writeln ('j - Cube');
Writeln ('k - Box');
// Validate and accept selection
cSelection := #0;
while not (cSelection in ['a'..'k']) do begin
Writeln;
Write ('Selection: ');
Readln (cSelection);

end;
// Setup the AUX library window for double buffer
auxInitDisplayMode (Aux_Double or Aux_RGBA);
auxInitPosition (100, 100, 250, 250);
auxInitWindow ('3D Aux library objects');
// Set background to blue
glClearColor (0.0, 0.0, 1.0, 1.0);
// Set drawing color to Red
glColor3f (1.0, 0.0, 0.0);
// Establish window resize function
auxReshapeFunc (@ChangeSize);
// Establish idle function
auxIdleFunc (@RenderScene);
// Start main loop
auxMainLoop (@RenderScene);

end;
begin
Main;

end.



December 1997 The Delphi Magazine 45

the same way. In fact, it’s a straight
port of a Microsoft SDK sample. It
can only be called a Delphi pro-
gram by virtue of the fact that I
used Delphi to write it! There are
no forms, nor any use of the VCL
library. Listing 1 simply corre-
sponds to the .DPR file itself (the
program with source code and DLL
can be found in AUXTEST.ZIP on
this month’s disk).

GLAUX For Beginners...
When you run the code, you’ll see a
console window from where you
can select one of several geometric
shapes. Enter the character for the
required shape, hit Enter and you’ll
see a wire-frame representation of
the selected shape rotating in all
three dimensions. You should end
the program by closing the graphi-
cal window, not the console
window.

So how does it work? As men-
tioned earlier, the GLAUX provides
a relatively high level view of real-
ity. It allows us to easily set up an
OpenGL runtime environment and
experiment with different OpenGL
calls. You can easily distinguish
between different calls because of
a naming convention that’s used
throughout OpenGL: API routines
in the GLAUX library are always
preceded by the letters aux, those
in the utility library are preceded
by glu and those in the core library
by gl. Easy!

The first thing our AuxTest pro-
gram does is ask the user what type
of shape they want to draw. This is
just classical Pascal and I won’t
bore you with the details! Once
that’s done, a call is made to aux-
InitDisplayMode. This tells OpenGL
that we want to use double-
buffering so as to provide smooth

animation. If you’re not familiar
with the term, it’s a common tech-
nique whereby the next frame of an
animation is drawn into an
off-screen bitmap while the cur-
rent frame is being displayed.
When it comes time to change
frames, the off-screen bitmap
instantly replaces the displayed
frame. In this way, the user never
sees the individual stages in the
drawing of a complex graphic: the
whole thing appears in one fast
operation and flicker is eliminated.
Following this, the auxInitPosition
call is used to specify an initial X,Y
position for the graphics window
and an initial width and height.
Lastly, the auxInitWindow call is
used to set the window title.

At this point, we’ve initialised
our window. Now we need to spec-
ify what appears inside it. glClear-
Color is the first core-level OpenGL
call we’ve used. It tells OpenGL
what colour to use when clearing
the window. Because we specified
a colour mode of Aux_RGBA when
setting the display mode, any
colour values we supply will be
interpreted as separate RGB inten-
sities with an additional alpha
channel. In the same way, the
glColor3f call indicates the colour
we want to use for drawing.

It’s worth noting that some
OpenGL calls are functional dupli-
cates of one another, they have the
same job, but differ in the type of
parameters they accept. The name
glColor3f might look odd, but it’s
telling you that this routine is all
about setting colour and that this
variant takes three floating point
numbers as input.

At this point, we’re almost done.
The Main procedure now sets up
the address of three call-back rou-
tines. One is a routine to execute
when the size of the graphics
window is changed. A second is a
routine to call during idle time, and
thirdly there’s a routine which
OpenGL calls in order to render the
required scene. In this particular
case, the second and third routines
are one and the same: that’s
because we want our animation to
execute as often as possible. When
writing call-back routines with
Delphi Pascal, always, always

OpenGL Versus DirectX 3D
As you’ll no doubt appreciate, the October issue of The Delphi Magazine
carried an article on DirectX 3D graphics. It’s tempting to ask why we
need two different and incompatible rendering libraries? The answer, of
course, is that we probably don’t. As with most such battles, only one
system will ultimately triumph: I have an old Betamax VCR gathering
dust in a corner of my office to prove it!

Nevertheless, each system has its own unique strengths and weak-
nesses. I’m not an expert with either library, but, put simply, DirectX 3D
has the advantage of speed whereas OpenGL is a portable standard
that’s available on a wide variety of platforms. In addition, few would
disagree that OpenGL offers a higher degree of photo-realism than can
currently be obtained from DirectX 3D.

My view is that 3D graphics on the IBM PC platform is still an immature
technology. At the present time, it’s undeniable that DirectX has the
edge in terms of market dominance, fuelled by the need for game devel-
opers to get every last ounce of speed from the available hardware. How-
ever, hardware performance continues to rise while prices plummet.
Just as my collection of books always expands to fill the available space,
so the complexity of modern software (and the end-user’s expectations
of graphic performance) always expands to match the capabilities of the
available hardware. Once people are happy with animation speed, they
will want animation which is more photo-realistic. Want to create some-
thing like Toy Story on your home PC? I’m sure it’ll be a reality within the
next ten years.

This being the case, my view of OpenGL is that it’s experiencing some-
thing of a temporary hiatus while the hardware catches up. Sales of Win-
dows NT never really took off until the hardware was not only powerful
enough but also cheap enough for the mass market. So it is with OpenGL.
For the moment, DirectX rules the roost, but stay tuned...

Note: for an interesting (but probably somewhat biased) technical
comparison of OpenGL and DirectX3D, you can check out the OpenGL
area of the Silicon Graphics Web site at www.sgi.com. While you’re at it,
feast your eyes on those tasty graphics workstations and ask yourself
what would make a suitable Xmas pressie for yours truly....



46 The Delphi Magazine Issue 28

remember this one golden rule:
call-back routines must be defined
using the stdcall directive. If you
forget to do this, your code will
compile perfectly and then crash
inexplicably!

The ChangeSize routine is called
to adjust OpenGL’s co-ordinate
system so that the size of the draw-
ing is consistent with the new
window size. I’m not going to
attempt to explain what
glLoadIdentity does or those mys-
terious looking calls to glOrtho.
Doing so would require a lot of
background detail on clipping vol-
umes and viewports.

As I’m sure you appreciate, my
mission here isn’t to explain every
single possible OpenGL call but
rather to give you a flavour for writ-
ing OpenGL code with Delphi. If
you want to learn more about the
details, I recommend a few books
at the end of this article.

More interesting is the
RenderScene call. This starts off by
clearing the screen, by which I
mean the background bitmap: as
previously mentioned, this is a
double-buffering example and
therefore all drawing operations
are relative to the hidden buffer.

Next, it issues three calls to glRo-
tatef. These calls effectively rotate
the displayed shape one ‘step’
along each of the three axes. With-
out these calls, the program would
be pretty boring. Having done this,
the rendering code calls one of the
assorted auxWireXXX routines to
draw the chosen shape. The
GLAUX library includes a number
of pre-defined shapes, including
the ubiquitous teapot. Listen you
DirectX guys, OpenGL had teapots
first!

Finally, glFlush is called to flush
any pending drawing commands.
Bear in mind that OpenGL has its
origins in graphics hardware
which pipelines drawing primi-
tives for improved performance.
Last but not least, auxSwapBuffers
does the all-important job of swap-
ping the background buffer with
the displayed buffer. This means
that the next call to RenderScene
will be operating on what was the
displayed buffer, but is now the
off-screen buffer.

Doing It The Delphi Way
Of course, it would somewhat
remiss of me if I left things there. To
use OpenGL properly, we want to
be able to integrate it into a ‘no-
rmal’ Delphi application without
having to mess around with con-
sole applications or anything like
that. Listing 2 is a complete
OpenGL program, written using
Delphi 3. You can see the program
running in Figure 3. Again, I con-
verted this code from a Microsoft
SDK C-based sample.

If you’re interested in other
sample OpenGL sources, you can
find many interesting snippets in
Microsoft’s Win32 SDK. This pro-
vides the source code to numerous
sample programs together with
the code for various screen savers,
including the Pipes saver and the
3D Maze program.

In order to access the full power
of OpenGL, we have to dispense
with the GLAUX library. This
means, however, that the program
now has to take more responsibil-
ity itself. In particular, quite a bit of
the code in Listing 2 is given over to
palette management. However, if
you look carefully you will see that
there are many similarities
between this and the GLAUX code.
For example, in the FormPaint
method, a routine called
RenderScene is called to create the
scene via a series of OpenGL draw-
ing commands. You’ll also notice
similarities in the code which
responds to window size changes.

Of particular interest in this rou-
tine is the deeply cool wglUse-
FontOutlines routine. This call

creates a set of display lists that
correspond to the outline of the
selected TrueType font. You can
think of display lists as being
OpenGL’s equivalent of a Windows
metafile: it’s a way of grouping
together a series of drawing opera-
tions for rapid execution when
needed. The wglUseFontOutlines
routine works in conjunction with
the font engine and converts the
font’s outlines into a series of low-
level drawing operations. The
result can then be ‘extruded’
rotated and lit as shown in Figure 3.

Over To You
There’s a lot more that I could say
about the code in Listing 2 and
about OpenGL itself. I’ve barely
scratched the surface and I’m fresh
out of space. What I set out to do
was write a motivational article to
give you a feel for OpenGL pro-
gramming in Delphi, and to that
extent I hope I’ve succeeded.

If you want to explore OpenGL
further, I recommend that you
start out with the GLAUX library,
experiment by adding functional-
ity to that and then , when you’re
feeling confident with OpenGL
itself, you can move over to a full-
fledged application which doesn’t
require the ‘hand-holding’ offered
by the GLAUX code.

Have fun!

Books
What you definitely will need to get
very much further with OpenGL is
a decent book on the subject. Let
me finish by giving you my own
recommendations:

➤ Figure 3: Here's the results of running the 'native-mode' OpenGL
program from Listing 2. This dispenses with the need for
GLAUX.DLL, but requires more complexity in the program code.



December 1997 The Delphi Magazine 47

➢ OpenGL Super-Bible by Richard
S. Wright Jr. and Michael Sweet.
Waite Group, ISBN: 1-57169-
073-5. Expensive but worth it.

➢ OpenGL Reference Manual, 2nd
Edition by the OpenGL Architec-
ture Review Board. Addison-
Wesley, ISBN: 0-201-46140-4.
Purely reference material.

➢ OpenGL Programming Guide,
2nd Edition by OpenGL Archi-
tecture Review Board.
Addison-Wesley, ISBN: 0-201-
46138-2.

The second and third books consti-
tute the official OpenGL Bible and

they are not platform-specific.
You’ll need them if you really get
into OpenGL. The first book is
more readable, very practical and
is targeted specifically at Windows
95 and NT developers.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave as
Dave@HexManiac.com.

➤ Listing 2

unit ugltest;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, OpenGL;

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormResize(Sender: TObject);

private
hRC: hGLRC;              // permanent Rendering context
dc: hDC;                 // private GDI Device context
hPal: hPalette;          // global palette handle
procedure WMQueryNewPalette(var Message:
TWMQueryNewPalette); message WM_QueryNewPalette;

procedure WMPaletteChanged(var Message:
TWMPaletteChanged); message WM_PaletteChanged;

public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
// Select the pixel format for a given device context
procedure SetDCPixelFormat (dc: hDC);
var
PixelFormat: Integer;
pfd: TPixelFormatDescriptor;

begin
FillChar (pfd, sizeof (pfd), 0);
with pfd do begin
nSize      := sizeof (pfd);
nVersion   := 1;
dwFlags    := PFD_Draw_To_Window or PFD_DoubleBuffer

or PFD_Support_OpenGL;
iPixelType := PFD_Type_RGBA;
cColorBits := 24;
cDepthBits := 32;
iLayerType := PFD_Main_Plane;

end;
// Choose pixel format best matching that described in pfd
PixelFormat := ChoosePixelFormat (dc, @pfd);
// Set the pixel format for the device context
SetPixelFormat (dc, PixelFormat, @pfd);

end;
// If needed creates 3-3-2 palette for
// the device context listed
function GetOpenGLPalette (dc: hDC): hPalette;
var
pPal: ^TLogPalette;
pfd: TPixelFormatDescriptor;
i, Colors, PixelFormat: Integer;
RedRange,GreenRange,BlueRange: Byte;

begin
Result := 0;
// Get pixel format index,
// retrieve pixel format description
PixelFormat := GetPixelFormat (dc);
DescribePixelFormat (dc, PixelFormat, sizeof (pfd), pfd);
// Does this pixel format require a palette?
// If not, do not create a palette and just return 0
if (pfd.dwFlags and PFD_Need_Palette) = 0 then Exit;
// Number of entries in palette: 8 bits yields 256 entries
Colors := 1 shl pfd.cColorBits;
// Allocate space for logical palette structure
// +  palette entries
GetMem (pPal, sizeof (TLogPalette) +
(Colors * sizeof (TPaletteEntry)));

try
// Fill in palette header
pPal^.palVersion := $300;
pPal^.palNumEntries := Colors;

{ Build mask of all 1s. This creates a number
represented by having the low order x bits set, where
x = pfd.cRedBits, pfd.cGreenBits, and pfd.cBlueBits }

RedRange   := (1 shl pfd.cRedBits)   - 1;
GreenRange := (1 shl pfd.cGreenBits) - 1;
BlueRange  := (1 shl pfd.cBlueBits)  - 1;
// Loop through all the palette entries
for i := 0 to Colors - 1 do begin
// Fill in the 8-bit equivalents for each component
pPal^.palPalEntry[i].peRed :=
(i shr pfd.cRedShift) and RedRange;

pPal^.palPalEntry[i].peRed :=
Trunc(pPal^.palPalEntry[i].peRed*255.0/RedRange);

pPal^.palPalEntry[i].peGreen :=
(i shr pfd.cGreenShift) and GreenRange;

pPal^.palPalEntry[i].peGreen :=
Trunc(pPal^.palPalEntry[i].peGreen *
255.0 / GreenRange);

pPal^.palPalEntry[i].peBlue :=
(i shr pfd.cBlueShift) and BlueRange;

pPal^.palPalEntry[i].peBlue :=
Trunc(pPal^.palPalEntry[i].peBlue*255.0/BlueRange);

pPal^.palPalEntry[i].peFlags := 0;
end;
// Create the palette
Result := CreatePalette (pPal^);
// Select and realize the palette for device context
SelectPalette (dc, Result, False);
RealizePalette (dc);

finally
// Free memory used for the logical palette structure
FreeMem (pPal, sizeof (TLogPalette) +
(Colors * sizeof (TPaletteEntry)));

end;
end;
// Perform any needed initialization on rendering context.
//  Here it sets up and initializes the lighting for scene.
procedure SetupRC (dc: hDC);
const
// Light values and coordinates
whiteLight: array[0..3] of GLfloat =
(0.4, 0.4, 0.4, 1.0);

diffuseLight: array[0..3] of GLfloat =
(0.8, 0.8, 0.8, 1.0);

specular: array[0..3] of GLfloat =
(0.9, 0.9, 0.9, 1.0);

lightPos: array[0..3] of GLfloat =
(-100.0, 200.0, 50.0, 1.0);

var
font: hFont;
logFont: TLogFont;
agmf: array[0..127] of TGlyphMetricsFloat;

begin
// Setup the Font characteristics
FillChar (logfont, sizeof (logfont), 0);
logfont.lfHeight := -10;
logfont.lfWeight := FW_Bold;
logfont.lfCharSet := Ansi_CharSet;
logfont.lfOutPrecision := Out_Default_Precis;
logfont.lfClipPrecision := Clip_Default_Precis;
logfont.lfQuality := Default_Quality;
logfont.lfPitchAndFamily := Default_Pitch;
lstrcpy (logfont.lfFaceName, 'Times New Roman');
// Create the font and display list
Font := CreateFontIndirect (logfont);
try
SelectObject (dc, Font);
{ create display lists for glyphs with 0.1 extrusion and
default deviation. Display list numbering starts at
1000 (it could be any number) }

wglUseFontOutlines (dc, 0, 128, 1000, 0.0, 1.0,
WGL_Font_Polygons, @agmf);

{ continued on next page... }

Looking for
the latest

Delphi news?

Visit the News
section of the

Developers Review
website at

www.itecuk.com/devrev



48 The Delphi Magazine Issue 28

{ Listing 2 continued }
finally
DeleteObject (Font);

end;
// Hidden surface removal
glEnable (gl_Depth_Test);
glEnable (gl_Color_Material);
glClearColor (0.0, 0.0, 0.0, 1.0);
glEnable (gl_Lighting);
glLightfv (gl_Light0, gl_Ambient, @whiteLight);
glLightfv (gl_Light0, gl_Diffuse, @diffuseLight);
glLightfv (gl_Light0, gl_Specular, @specular);
glLightfv (gl_Light0, gl_Position, @lightPos);
glEnable (gl_Light0);
glColorMaterial (gl_Front, gl_Ambient_And_Diffuse);
glMaterialfv (gl_Front, gl_Specular, @specular);
glMateriali (gl_Front, GL_Shininess, 128);
glColor3ub (0, 255, 0);   // Green 3D Text
glClearColor (0.0, 0.0, 0.0, 1.0);  // Black background

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
// Window creation, setup for OpenGL
dc := GetDC (Handle);
SetDCPixelFormat (dc);
hPal := GetOpenGLPalette (dc);
// Create the rendering context and make it current
hRC := wglCreateContext (dc);
wglMakeCurrent (dc, hRC);
SetupRC (dc);

end;
procedure RenderScene (const TheText: String);
begin

// Clear the window with current clearing color
glClear (gl_Color_Buffer_Bit or gl_Depth_Buffer_Bit);
// Save the matrix state and do the rotations
glMatrixMode (gl_ModelView);
// Draw the string
glListBase (1000);
glPushMatrix;
glRotatef (6.0, 1.0, 0.0, 0.0);
glRotatef (350.0, 0.0, 1.0, 0.0);
glCallLists(Length(TheText), gl_Unsigned_Byte,
PChar(TheText));

glPopMatrix;
// Flush drawing commands
glFlush;

end;
procedure TForm1.WMQueryNewPalette(
var Message: TWMQueryNewPalette);

begin
Inherited;
if hPal <> 0 then begin
// Selects the palette into the current device context
SelectPalette (dc, hPal, False);
// Map entries from current palette to system palette
RealizePalette (dc);
// Repaint, forces remap of palette in current window
InvalidateRect (Handle, Nil, False);

end;
end;
procedure TForm1.WMPaletteChanged(
var Message: TWMPaletteChanged);

begin
Inherited;

{ continued opposite... }

Dealing With ‘Rogue’ DLLs

In time honoured fashion, this month’s column
includes a bug-fix for last month’s code. The fix is

particularly bizarre because, believe it or not, it isn’t
my bug; rather, it’s one of those weird programming
scenarios that happen from time to time.

Let me explain. You’ll remember that I developed a
little utility which mimicked the behaviour of Merlin’s
Executable Viewer, allowing you to view the units
compiled into a particular executable, whether it be
an application or DLL. By chance, I was browsing
around my hard disk using the Merlin utility and I hap-
pened to come across GExperts (yet another Delphi
add-on, written by a chap called Gerald Nunn of
Canada). To my surprise, I discovered that whenever I
tried running the Executable Viewer on the GEX-
PERT3.DLL (the heart of GExperts), it consistently
crashed with an access violation. No other DLL
seemed to produce this behaviour.

“Oh well”, I thought, “If you want the job doing prop-
erly, do it yourself!” Confidently, I fired up my own
little utility and pointed it at the offending DLL, fully
expecting it to work flawlessly. But pride comes
before a fall! To my amazement, last month’s program
crashed in exactly the same way. Obviously, there
was something deeply odd happening here... I fired up
Delphi and tried single-stepping through my code.
Everything went fine until I got to the FreeLibrary call.
At this point, the access violation was generated.

I spent some time chewing over this problem with
Mike and John (the authors of Merlin) and more time
peeking inside the GExperts DLL. To cut a long story
short, it turns out that GEXPERT3.DLL is an example
of a “rogue” DLL: it doesn’t play by the rules. It’s easy
to prove this for yourself by simply reducing the code
for last month’s program to just two statements: a
call to LoadLibrary, followed immediately by the

corresponding call to FreeLibrary. Make these
changes and you’ll find that the program will still
crash. By no stretch of the imagination should this
ever happen when working with a well-behaved DLL.

So how can a badly-behaved DLL cause this sort of
crash to happen? This is conjecture on my parts, but I
suspect that internally, within its own initialisation
code, GEXPERT3.DLL is loading itself (via a call to the
System unit routine LoadResourceModule, in this par-
ticular case) and that’s what is causing problems
when FreeLibrary is called to unload the library.

Fortunately, there’s a simple fix which can be used
to protect against this type of problem. Bear in mind
that this has general applicability outside of my unit
peek program: I’d advise you to use it whenever you
want to access a third-party DLL or executable with a
view to getting a resource handle. The trick is simply
to use a new routine, LoadLibraryEx. Simply find the
LoadLibrary statement in last month’s code and
replace it with this:

hLib := LoadLibraryEx(
PChar(OpenDialog.FileName), 0,
Load_Library_As_DataFile);

By using LoadLibraryEx and specifying
Load_Library_As_DataFile as the third parameter,
Windows will load the specified library (or executa-
ble) without executing any initialisation code which it
might contain. This fixes the problem and should pro-
tect against any future encounters with other rogue
DLLs.

In fairness to Gerald, I understand that the latest
version of GExperts fixes the problem, but it’s obvi-
ously important to protect your code against any
other ‘rogues’ that might be out there...



December 1997 The Delphi Magazine 49

{ Listing 2 continued }
// Don't do anything if palette does not exist, or if
// this is the window that changed the palette.
if (hPal <> 0) and (Handle <> Message.PalChg) then begin
// Select the palette into the device context
SelectPalette (dc, hPal, False);
// Map entries to system palette
RealizePalette (dc);
// Remap current colors to the newly realized palette
UpdateColors (dc);

end;
end;
procedure TForm1.FormPaint(Sender: TObject);
begin
// The painting function. This message sent by Windows
// whenever the screen needs updating.
RenderScene ('Delphi 3.0');
SwapBuffers (dc);
ValidateRect (Handle, Nil);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
// Deselect the current rendering context and delete it
wglMakeCurrent (dc, 0);
wglDeleteContext (hRC);
if hPal <> 0 then DeleteObject (hPal);
ReleaseDC (Handle, dc);

end;
{ Change viewing volume + viewport.
Called when window resized }

procedure ChangeSize (w, h: GLsizei);
const
nRange: GLFloat = 125.0;

begin
// Prevent a divide by zero
if h = 0 then h := 1;
// Set Viewport to window dimensions
glViewport (0, 0, w, h);
// Reset coordinate system
glMatrixMode (gl_Projection);
glLoadIdentity;
// Establish clipping volume
// (left, right, bottom, top, near, far)
if w <= h then
glOrtho(-nRange, nRange, -nRange*h/w, nRange*h/w,
-nRange*2.0, nRange*2.0)

else
glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange,
-nRange*2.0, nRange*2.0);

// Set up transformation to draw the string.
glTranslatef (-110.0, 0.0, -5.0);
glScalef(60.0, 60.0, 60.0);
glMatrixMode (gl_ModelView);
glLoadIdentity;

end;
procedure TForm1.FormResize (Sender: TObject);
begin
ChangeSize (ClientWidth, ClientHeight);
InvalidateRect (Handle, Nil, False);

end;
end.

On our Web site:
www.itecuk.com
Here’s some of what you can find:

➤ Article index database:
online or downloadable versions

➤ The Delphi Magazine
Book Review Database

➤ Details of what’s coming up
in the next issue

➤ Back issues:
contents and availability

➤ Lots and lots of sample articles
from back issues

➤ Links to other great Delphi sites


	An Introduction To OpenGL
	GLAUX For Beginners...
	OpenGL Versus DirectX 3D
	Doing It The Delphi Way
	Over To You
	Books

